

IWS

Multilayer Laue Lenses with Long Working Distances

Sven Niese¹, Saeed Mirzaei², Peter Gawlitza²

¹ AXO DRESDEN GmbH, Gasanstaltstraße 8b, 01237 Dresden, Germany; sven.niese@axo-dresden.de ² Fraunhofer IWS Dresden, Winterbergstraße 28, 01277 Dresden, Germany

Introduction

Multilayer Laue Lenses (MLLs) are innovative diffractive X-ray optics with a high numerical aperture (NA) that enable X-ray focusing to sub-10 nm spatial resolution even for hard x-rays [1]. The principle of MLLs relies on diffraction. The individual layers (zones) are made in such a way, that constructive interference occurs at the focus.

Synthesis of Multilayer Laue Lenses

Alternating thin layers must be deposited with a thickness gradient so that they follow zone plate law. Free-standing coatings are structured by short-pulse laser followed by FIB thinning for the target photon energy [2]. Fig. 1 shows the schematic of an MLL.

Fig. 1: Design, fabrication and focusing of Multilayer Laue Lenses.

Results

Application of MLL in synchrotron beamlines

Novel synchrotron X-ray sources provide a very intense beam with extraordinary high brilliance and coherence. The performance of MLLs in focusing a synchrotron beam to a small spot size has been well documented [3,4]. Currently, one major challenge is a limited working distance (WD) impeding the investigation of real specimens. Therefore, the development of MLLs with large WD and acceptable resolution is crucial. Table 1 lists three types of our MLLs with long, very long and extra-long WD (LWD, VLWD, ELWD) developed at Fraunhofer IWS in cooperation with AXO DRESDEN.

Table 2: MLL parameters and properties.

MLL design	Tested		Under test
	LWD	VLWD	ELWD
Materials	Mo/C/Si/C	Mo/C/Si/C	Mo/C/Si/C
Focal length (mm) @ 12 keV	9	45	67.5
Working distance (mm) @ 12 keV	3.1	25	39
Geometry	Flat tilted	Flat tilted	Flat tilted
Stack height (µm)	50	100	150
Individual layers	12000	17000	24000
Focus size FWHM (nm)	22×22	80×80	85×85

An integrated MLL mount was developed: This mount integrates the vertically and the horizontally focusing MLL to a 2D operating lens device and provides all required degrees of freedom for the internal alignment. This significantly reduces the complexity of the final integration to the beamline. Fig. 2 shows all MLL designs installed on the ESRF ID13 beamline and corresponding sample at the focal position. An order sorting aperture blocks the higher-order diffractions and the direct beam.

Fig. 2: Comparison of MLL designs at 12 keV.

References

- [1] Bajt, Saša, et al., Light: Science & Applications 7.3 (2018): 17162-17162.
- [2] Kubec, Adam et al., Applied Physics Letters 110 (2017): 111905
- [3] Yan, Hanfei, et al., X-Ray Optics and Instrumentation 2010.1 (2010): 401854.
- [4] Kubec, Adam, et al., Journal of Synchrotron Radiation 24.2 (2017): 413-421.
- [5] Susanne Hönig et al., Optics Express 19 (2011): 16324-16329.
- [6] Björn Enders et al., Proceedings of the Royal Society A vol. 472 (2016): 20160640.
- [7] Meindlhumer, Michael, et al., Journal of Vacuum Science & Techn. A 42.2 (2024).

The focusing characteristics is typically evaluated with ptychography [5,6]. Our MLLs were tested at PETRA III, P03, operating at 12.7 keV. These lenses exhibited the focus size of 30×40 nm² and as shown in Fig. 4, the minimal features of reconstructed test patterns could be resolved. Fig. 5 also shows preliminary results from experiments at ID13, ESRF.

Fig. 4: Experimental setup and ptychographic reconstruction at PETRA III, P03.

Fig. 5: MLLs developed at IWS exhibited ≈ 22 nm (LWD design, left) and 53 nm (VLWD design, right) focus size at ESRF, ID13 (preliminary result).

MLLs for structural analysis

VLWD MLLs were used to focus the synchrotron beam at ID13, ESRF and investigate stress and structural properties in transistors. A cross-sectional nano-XRD setup as insitu micromechanical experiments is shown in Fig. 6 (a), where a sample is scanned with an MLL focused X-ray beam with ≈ 75 nm FWHM [7]. A notched cantilever with Pt dots as markers is shown in Fig. 6 (b). Local defect density and stress distributions were investigated under load, see in Fig. 6 (c)

Fig. 6: Results from in-situ micromechanical experiments [7].

Conclusion

- MLLs address the limits of traditional X-ray lenses such as limited resolutions and diffraction efficiencies particularly for hard x-rays
- MLLs enable high-resolution X-ray studies with nm-scale focusing
- Three designs with increasing working distance were successfully developed
- MLLs can be tailored to specific applications offering flexibility in terms of energy range, focal length and working distances
- The integrated MLL mount allows an easy and safe integration to the beamline

Acknowledgements

Authors acknowledge Dr. Manfred Burghammer from ESRF, Grenoble, France for his assistance with measurements and insightful contribution to discussion. This research was supported by MI-1216, MI-1855 and MI-1463 long-term projects at ESRF Grenoble, France as well as PETRA III LTP: II-20180007 EC, DESY, Hamburg, Germany.